REFERENCE PAGES

ALGEBRA

ARITHMETIC OPERATIONS

$a(b+c)=a b+a c$

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}
$$

$\frac{a+c}{b}=\frac{a}{b}+\frac{c}{b}$
$\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a}{b} \times \frac{d}{c}=\frac{a d}{b c}$

EXPONENTS AND RADICALS

$x^{m} x^{n}=x^{m+n}$

$$
\frac{x^{m}}{x^{n}}=x^{m-n}
$$

$\left(x^{m}\right)^{n}=x^{m n}$
$x^{-n}=\frac{1}{x^{n}}$
$(x y)^{n}=x^{n} y^{n}$
$\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$
$x^{1 / n}=\sqrt[n]{x}$
$x^{m / n}=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m}$
$\sqrt[n]{x y}=\sqrt[n]{x} \sqrt[n]{y}$
$\sqrt[n]{\frac{x}{y}}=\frac{\sqrt[n]{x}}{\sqrt[n]{y}}$
FACTORING SPECIAL POLYNOMIALS
$x^{2}-y^{2}=(x+y)(x-y)$
$x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
$x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

BINOMIAL THEOREM

$(x+y)^{2}=x^{2}+2 x y+y^{2} \quad(x-y)^{2}=x^{2}-2 x y+y^{2}$
$(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$
$(x-y)^{3}=x^{3}-3 x^{2} y+3 x y^{2}-y^{3}$
$(x+y)^{n}=x^{n}+n x^{n-1} y+\frac{n(n-1)}{2} x^{n-2} y^{2}$

$$
+\cdots+\binom{n}{k} x^{n-k} y^{k}+\cdots+n x y^{n-1}+y^{n}
$$

where $\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{1 \cdot 2 \cdot 3 \cdots \cdots k}$
QUADRATIC FORMULA
If $a x^{2}+b x+c=0$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
INEQUALITIES AND ABSOLUTEVALUE
If $a<b$ and $b<c$, then $a<c$.
If $a<b$, then $a+c<b+c$.
If $a<b$ and $c>0$, then $c a<c b$.
If $a<b$ and $c<0$, then $c a>c b$.
If $a>0$, then

$$
\begin{array}{lll}
|x|=a & \text { means } & x=a \quad \text { or } \quad x=-a \\
|x|<a & \text { means } & -a<x<a \\
|x|>a & \text { means } & x>a \text { or } x<-a
\end{array}
$$

GEOMETRY

GEOMETRIC FORMULAS

Formulas for area A, circumference C, and volume V :

Triangle	Circle	Sector of Circle
$A=\frac{1}{2} b h$	$A=\pi r^{2}$	$A=\frac{1}{2} r^{2} \theta$
$=\frac{1}{2} a b \sin \theta$	$C=2 \pi r$	$s=r \theta(\theta$ in radians $)$

Sphere
Cylinder
Cone
$V=\frac{4}{3} \pi r^{3}$
$V=\pi r^{2} h$
$A=4 \pi r^{2}$

DISTANCE AND MIDPOINT FORMULAS

Distance between $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Midpoint of $\overline{P_{1} P_{2}}:\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

LINES
Slope of line through $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Point-slope equation of line through $P_{1}\left(x_{1}, y_{1}\right)$ with slope m :

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Slope-intercept equation of line with slope m and y-intercept b :

$$
y=m x+b
$$

CIRCLES
Equation of the circle with center (h, k) and radius r :

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

REFERENCE PAGES

TRIGONOMETRY

ANGLE MEASUREMENT

π radians $=180^{\circ}$
$1^{\circ}=\frac{\pi}{180} \mathrm{rad} \quad 1 \mathrm{rad}=\frac{180^{\circ}}{\pi}$
$s=r \theta$
(θ in radians)

RIGHT ANGLE TRIGONOMETRY

$$
\begin{array}{ll}
\sin \theta=\frac{\text { opp }}{\text { hyp }} & \csc \theta=\frac{\text { hyp }}{\text { opp }} \\
\cos \theta=\frac{\text { adj }}{\text { hyp }} & \sec \theta=\frac{\text { hyp }}{\text { adj }} \\
\tan \theta=\frac{\text { opp }}{\text { adj }} & \cot \theta=\frac{\text { adj }}{\text { opp }}
\end{array}
$$

TRIGONOMETRIC FUNCTIONS

$\sin \theta=\frac{y}{r}$	$\csc \theta=\frac{r}{y}$
$\cos \theta=\frac{x}{r}$	$\sec \theta=\frac{r}{x}$
$\tan \theta=\frac{y}{x}$	$\cot \theta=\frac{x}{y}$

GRAPHS OF TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS OF IMPORTANT ANGLES

θ	radians	$\sin \theta$	$\cos \theta$	$\tan \theta$
0°	0	0	1	0
30°	$\pi / 6$	$1 / 2$	$\sqrt{3} / 2$	$\sqrt{3} / 3$
45°	$\pi / 4$	$\sqrt{2} / 2$	$\sqrt{2} / 2$	1
60°	$\pi / 3$	$\sqrt{3} / 2$	$1 / 2$	$\sqrt{3}$
90°	$\pi / 2$	1	0	-

FUNDAMENTAL IDENTITIES
$\csc \theta=\frac{1}{\sin \theta}$
$\sec \theta=\frac{1}{\cos \theta}$
$\tan \theta=\frac{\sin \theta}{\cos \theta}$
$\cot \theta=\frac{\cos \theta}{\sin \theta}$
$\cot \theta=\frac{1}{\tan \theta}$
$1+\tan ^{2} \theta=\sec ^{2} \theta$
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$1+\cot ^{2} \theta=\csc ^{2} \theta$
$\cos (-\theta)=\cos \theta$
$\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta$
$\cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta$
$\tan \left(\frac{\pi}{2}-\theta\right)=\cot \theta$

THE LAW OF SINES
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$

THE LAW OF COSINES
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$b^{2}=a^{2}+c^{2}-2 a c \cos B$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

ADDITION AND SUBTRACTION FORMULAS
$\sin (x+y)=\sin x \cos y+\cos x \sin y$
$\sin (x-y)=\sin x \cos y-\cos x \sin y$
$\cos (x+y)=\cos x \cos y-\sin x \sin y$
$\cos (x-y)=\cos x \cos y+\sin x \sin y$
$\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}$
$\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}$

DOUBLE-ANGLE FORMULAS
$\sin 2 x=2 \sin x \cos x$
$\cos 2 x=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x$
$\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$

HALF-ANGLE FORMULAS
$\sin ^{2} x=\frac{1-\cos 2 x}{2} \quad \cos ^{2} x=\frac{1+\cos 2 x}{2}$

Steps for Finding the Sign of a Function $f(x)$

- Simplify the function $f(x)$.
- Find the domain of $f(x)$. (Find the x values at which f is not defined and omit them from the real number line.)
- Find zeros of $f(x)$, or the solutions of $f(x)=0$.
- Draw a real number line and mark off numbers at which $f(x)$ is zero or undefined (x values omitted from the domain).
- The last step divides the real number line to several intervals.
- Select a number in each interval and evaluate $f(x)$ at the number
- If the value of f is positive, then $f(x)$ is positive for all numbers in that interval.
- If the value of f is negative, then $f(x)$ is negative for all numbers in that interval.

Steps for Drawing the Graph of a Rational Function $f(x)$

- Factor both numerator and denominator.
- Find the domain of $f(x)$. (All x values for which the denominator is not zero.)
- Write $f(x)$ in its lowest terms: $f(x)=\frac{P(x)}{D(x)}=\frac{a_{n} x^{n}+\cdots+a_{0}}{b_{m} x^{m}+\cdots+b_{0}}, \operatorname{Deg} P(x)=n$ and $\operatorname{Deg} D(x)=m$.
- If a factor $x-c$ is cancelled in the last step, then $\left(c, \frac{P(c)}{D(c)}\right)$ is a hole in the graph.
- Find its x - and y-intercepts by setting $P(x)=0$ and solving for x and finding the $f(0)$ value, respectively.
- Find its vertical asymptotes, if any.
- Solve $D(x)=0$. The solutions $x=h$ are the vertical asymptotes.
- Find its horizontal or oblique asymptote.
- If $n<m$, then the horizontal asymptote is $y=0$.
- If $n=m$, then the horizontal asymptote is $y=\frac{a_{n}}{b_{m}}$ where a_{n} and b_{m} are the leading coefficients of $P(x)$ and $D(x)$, respectively.
- If $n>m$, then there is an oblique asymptote $y=Q(x)$ where $Q(x)$ is the quotient of the long-division: $\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}$.
- Determine if the graph crosses the horizontal or oblique asymptote by solving $f(x)=0(x$ intercepts), $f(x)=\frac{a_{n}}{b_{m}}$, and $R(x)=0$ for each of the above three cases, respectively.
- Graph the asymptotes and x - and y-intercepts.
- The x-intercepts and vertical asymptotes divide the x-axis into several intervals.
- Choose one or more x values in each interval and evaluate $f(x)$ at those numbers and plot all such points.
- It might be necessary to plot additional points to determine the behavior of the graph near each asymptote.
- In each interval, draw smooth curves connecting plotted points.

